Survey of Automated Malware Identification Systems

Eugene Davis
University of Alabama in Huntsville
Electrical and Computer Engineering Department
Alabama 35806 .
eugene_davis@eugenemdavis.net

ABSTRACT

One of the trends in the security world of the twenty-first
century has been an explosive growth in malware. In the
last half of the twentieth century researchers could manu-
ally perform analysis on anti-virus and produce signatures
that allowed malware’s detection on end-user systems, but
in the first decade of the twenty-first this began to change.
Now anti-virus vendors must handle millions of samples of
suspected malware a year, which all must be analyzed to
detect if they contain malware, and if containing malware
have new signatures generated to match for deployment on
customer’s systems. To make this problem harder, there are
millions of good programs which may exhibit malware-like
behaviors, such as the digital rights management systems
on many games and media. To continue successfully com-
bating the increase in malware, there has been an increasing
reliance on automated systems which can identify if a sample
is malware and create a signature to match future instances
of the malware. Better yet are systems which are capable
of identifying the family of malware from which the sam-
ple came, in order to help with its future disinfection and
classification. This paper surveys some of these automated
techniques for detecting and identifying malware.

Categories and Subject Descriptors

K.6.5 [Operating Systems]: Security and Protection—In-
vasive Software; 1.2.1 [Computing Methodologies]: Arti-
ficial Intelligence—Industrial Automation; 1.2.8 [Computing
Methodologies|: Problem Solving, Control Methods, and
Search—Heuristic Methods

General Terms
Security

Keywords

Malware, Automation, Machine Learning

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CS 530. Summer, 2013. Huntsville, Alabama, USA

Copyright 2013 ACM 0-12345-67-8/90/13 ...$15.00.

1. INTRODUCTION

The amount of malware in the wild has seen a huge pro-
liferation in the early twenty-first century, especially when
compared to the end of the twentieth century.[13] Where
malware used to be created out of a desire to experiment
with systems, and a desire to spread fame as a malware
author, modern malware is driven by an underground econ-
omy, and is targeted towards making money through the ex-
traction of personal information such as banking passwords
or through the control of massive computing resources, as
with botnets.[12] The upshot of this transformation is that
malware researchers are swamped with malware to analyze.
Vendors of commercial anti-virus software in particular must
be able to rapidly analyze samples to identify if they con-
tain malware, and then create and distribute signatures that
will reliably detect the malware on consumer systems, with-
out flagging any legitimate software as being malicious. To
give a concrete idea of the scale of incoming samples, McAfee
Labs reports that as of the first quarter of 2013, they have re-
ceived 128 million samples since they began operating, with
approximately 15 thousand in that quarter alone.[1]

In order to attempt to keep up with this backlog, re-
searchers have turned to automated systems to do some of
the initial work of detecting malware within samples, and
identifying what malware family it belongs to. In the aca-
demic arena, these systems usually just try to detect new
malware samples, or identify what family a sample may be-
long to. In the commercial arena, these systems perform
identification, but also attempt to generate signatures that
can be distributed to the vendor’s customers to identify each
strain of malware.

A number of approaches attempt to solve the problem
of automatically analyzing malware. There are two major
categories of systems, the first being static analysis systems,
which look at the machine language or assembly directly,
and attempt to identify malware without ever running the
suspect code. The second is dynamic analysis systems which
run the suspect code in order to trace the code as it runs or
observe its behaviors.

Automated malware analysis also faces a major challenge.
Even in the face of changing and heavily obfuscated code,
they must be capable of identifying a particular strain of
malware, without accidentally identifying good software as
bad. This challenge is made intense by the increasing use
by malware authors of artificial intelligence techniques to
obfuscate their code and make the behaviors of the malware
look like those of legitimate software.

Automated malware analysis relates to artificial intelli-

gence because it uses techniques from machine learning and
machine reasoning. It also has great emphasize on heuristics,
which allow identifying obvious traits common to malware
at low computational cost.

This paper focuses on surveying the heuristics and ma-
chine learning and reasoning techniques used in commercial
and research automated malware analysis systems, and how
those can be applied to detect new and existing forms of
malware, and where possible generate signatures to allow
end user systems to be protected by anti-virus. The topic of
exactly what composes signatures is left for future research.

2. REVIEW OF MATERIALS

Dube, et. al.[14] covers a number of means by which to
perform static analysis, in particular it discusses a variety
of heuristics which can be applied during static analysis to
provide evidence that the sample is malicious. Griffin, et.
al.[3] provides additional heuristics as well as a good ex-
planation with regards to applying Markov chains to static
analysis, all as applied to the commercial analysis system
Hancock. Lakhotia, et. al.[5] provides more insight into de-
tecting malware despite obfuscation, and briefly talks about
Bloodhound, an automated hybrid static and dynamic anal-
ysis system.

Lin and Stamp[7] also discuss Markov chains, as well as
other approaches to static analysis of malware. Wong and
Stamp[16] revisit the discussion, and briefly discuss why low
false positive rates are so important.

McAfee Labs[1] provides a report with the figures for the
number of samples they have received in the first quarter of
2013.

Nascimento[10], et. al. discusses the use of neural net-
works to aid code porting and reconstruction, including the
automatic creation of control flow diagrams, something po-
tentially useful in malware analysis.

Luger[8] covers basic artificial intelligence technology, and
in particular provides a description of Markov chains. Szor[13]
provides a recent history of viruses, as well as definitions of
some of the more obscure obfuscation techniques like poly-
morphism and metamorphism. Skoudis[12] also provides
information about malware, and is focused on malware in
general, unlike Szor’s focus on viruses and worms.

Denning|[2] gives the basis for an intrusion detection sys-
tem which models user behaviors and examines anomalies
based on that profile, while Mutz, et. al.[9] and Lanzi, et.
al.[6] build intrusion detection systems based on modeling
system calls to improve the ability to detect real anomalies.

Wei, et. al.[15] covers the identification of botnets via
behavioral clustering applied to network packets. Perdisci,
et. al.[11] also builds on the same area, giving more detail
on identifying which family the botnet came through by ex-
amining packet structure. Kuochen, et. al.[4] also builds on
the same topic, but utilizes fuzzy logic in pattern recognition
to identify botnets attempting to make their traffic appear
human-like.

3. BRIEF INTRODUCTION TO MALWARE

Though this paper’s focus is not on defining or describ-
ing malware, but rather the systems performing automated
analysis on malware, a basic knowledge of malware is nec-
essary for understanding the systems in question. This sec-
tion will provide a brief introduction to malicious software

to provide the necessary context.

Malware, an abbreviation for malicious software, is soft-
ware which intends to do damage to a victim. In the past
the damage was usually simply to the files, software or hard-
ware of the victim’s machine, but in the present is often
targeted to extracting money from the victim. The terms
malware and malicious software will be used interchangeably
throughout the paper.

3.1 Types of Malware

This section will briefly define the basic types of malware.

3.1.1 Virus

A virus is a type of malware which can autonomously
infect many files on a victim machine once introduced to
the system. Note that it cannot transmit itself to a new
machine autonomously, requiring human intervention (with
the exception of transmitting over file shares).[13]

3.1.2 Worm

A worm is malware similar to a virus. A worm may move
from networked computer to network computer.[13] For a
worm, a computer is analogous to a file to infect for a virus.

3.1.3 Trojan

A Trojan is malware that masquerades as legitimate soft-
ware. It tricks the victim into installing it, then attacks,
often providing a rootkit.[12]

3.1.4 Backdoor

A backdoor is malware that provides access (usually re-
mote) to a computer for the attacker.[12]

3.1.5 Rootkit

A rootkit is malware that conceals itself within the target
system. Rootkits can either work at a user level, in which
case they replace binaries that users have access to, or they
can work at a kernel level. Rootkits are key to much of the
modern success of malware, as they can prevent anti-virus
from detecting them, and demonstrate one of the major bar-
riers to dynamic analysis.[12]

3.1.6 Hybrid Malware

Hybrid malware further muddies the waters of malware
analysis. Hybrid malware combines two or more other forms
of malware into a new type. A typical example is a botnet,
which may be distributed as a Trojan, while also propagat-
ing with a worm, use a rootkit to hid itself, and providing
a backdoor to provide the actual bot functionality. Hybrid
malware demonstrates problems in actually classifying mal-
ware, especially with static analysis which does not show its
behaviors.[12]

3.2 Anti-Reverse Engineering in Malware

This section will briefly look at how malware fights analy-
sis efforts. Many of these defenses present major challenges
to automated (or manual) analysis.

3.2.1 Static Analysis Protection Techniques

Obfuscation varies in its level of application, but at is
most basic hinders efforts to understand code. Obfuscation
is better against human researchers than automated sys-
tems. Similarly, code encryption encrypts the body of the

malware code, so that it cannot be directly read. Since the
key must be included in the malware, this generally has lim-
ited effect, and sends a signal that something is suspicious
in the code.

Polymorphism brings protection to a new level. In poly-
morphism, the code is encrypted, and ever time a new infec-
tion is created, the malware recreates its encryption engine
in a new form, so no two malware samples will be encrypted
in the same way.[13] Metamorphism poses the major prob-
lem to repeatably identifying malware. Metamorphic mal-
ware rewrites its code during every install, greatly reducing
the number elements of itself that can be included in a sig-
nature.[13][12]

3.2.2 Anti-Debugging Techniques in Malware

Modern malware authors deploy a number of technologies
to prevent debugging of their software during dynamic anal-
ysis. At the most basic level, INT3 instructions are inserted
into the code to trigger the debugger, and the reaction of
the computer is monitored. Other techniques include run a
second process to look for evidence of a debugger and shut
it or the program down. More sophisticated are red pills - a
technology taking its name from a scene in the movie "The
Matrix”, a red pill attempts to detect if it is running on an
emulator by running unusual instructions that crash many
emulators. Since emulators are rarely capable of reproduc-
ing the entire instruction set of a given architecture, red pills
have proven quite effective.[13] When running on the same
machine as the dynamic analysis system, these may prevent
any real progress from being made.

4. STATIC ANALYSIS SYSTEMS

Static analysis relies on examining machine code or de-
compiling code into assembly in order to discern its purpose
or intent. Static analysis is common for commercial mal-
ware analysis because it is the quickest approach, which al-
lows a single system to rapidly analyze many malware sam-
ples.[3] Static analysis also reduces containment concerns,
since it never runs potentially virulent samples. Unfortu-
nately, even as malware researcher’s techniques improve, the
malware author has access to a continually improving arse-
nal of anti-reverse engineering techniques including packing
of the binaries, polymorphic code, metamorphic code, as
well as camouflage techniques designed to make malicious
code look innocuous.

Although automation cannot significantly improve upon
the abilities of malware researchers it is capable of signifi-
cantly expediting the process. Using a variety of heuristics
as well as utilizing machine learning technologies an auto-
mated system is able to detect and categorize far more mal-
ware samples than any number of human researchers would
be capable of handling. Most commercial systems belonging
to anti-virus vendors are capable of generating signatures
which uniquely identify a piece of malware. In particular
static analysis must be able to identify a sample as mali-
cious or not, even if unable to classify what type of malware
it is.

This section will use the Hancock system at Synamtec
which automatically generates signatures for new malware
samples for a real world example of a static analysis system.

4.1 Markov Chain in Static Analysis

Most automated malware analysis systems use Markov

models to model the suspected malware code that they are
examining.

Markov models are probabilistic models of events or se-
quences. The model consists of Markov chains, which model
the probability of a particular sequence of states occurring
where only the probability of the previous state in the se-
quence is considered for the probability of the current state.[§]
For most malware analysis, the type of Markov model used
is an n-gram model. A gram is the unit being analyzed (it’s
state).

4.1.1 Markov Chains Applied to Malware Code

For static analysis, each byte of machine code becomes a
gram. The system then applies an n-byte sized sliding win-
dow across the entirety of the malware, and makes Markov
chains out of the entirety of the sample. Chains that re-
peat become identified as common, and need to be stored
only once. Further pruning must be done in order to accom-
modate the storage of all the chains for a large number of
samples, this pruning is generally system specific.[14]

4.1.2 Modeling legitimate software to Reduce False
Positives

Unfortunately, directly applying Markov chains gathered
from malware to a new sample to determine if it is malware
is an approach doomed to failure. All software under a given
architecture is bound to share many commonalities at the
machine code level, be it legitimate or malware. Even if
the system can be tuned enough to successfully reject most
legitimate software, making it useful for a researcher, anti-
virus vendors require an extremely low false positive rate or
they risk loosing customer trust in their product.[3]

The solution to this is to create a database of legitimate
programs. Using this database of Markov chains, it becomes
possible to select candidate chains from samples, and only
accept chains that are very rare within the legitimate soft-
ware database as candidates to identify the malware. Since
Markov models can be generated in a reasonable amount
of time for a reasonable amount of processing power, very
large legitimate software databases can be used to decrease
the likelihood of false positives dramatically.[3]

It is important to note that even in cases where the chain
is acceptable from the perspective of not being in the le-
gitimate software database, polymorphic and metamorphic
malware further complicate the issue. The chain must re-
main constant across each variation of the malware, or else
it has limited usefulness as the metamorphic malware simply
rewrites itself on each new victim.[7]

4.1.3 Markov Modeling in Hancock

The the Synamtec automated system for malware analy-
sis, Hancock, utilizes Markov chains in order to find chains
that could be included in signatures for distribution to their
clients. As Synamtec is a commercial anti-virus vendor, they
must have a low false positive rate as well as a high success
in malware identification in order to retain their customers,
as mentioned in the previous section.

Hancock utilizes a very large database of legitimate soft-
ware to generate its legitimate software chains, on the or-
der of several terabytes. In order to scale to this to a
large size while retaining usability, they identify areas of
high-information byte sequences in the program and cap-
ture chains only off of those sequences. In order to keep

their false positive rate under one percent, they only accept
byte sequences that are very rare, that is occurring in a tiny
fraction of their legitimate software database, as potential
signatures for identifying malware.[3]

The actual Markov chains in Hancock are 5-gram, but the
generation of chains also includes generating grams smaller
in order to have more granular sequences as well. In order to
support all of these chains, Hancock prunes chains based on
their amount of information gained from it, if it gains little
information then the chain is cut. This pruning is done after
the creation of the model, in order that the relative informa-
tion of the chains can be calculated. Since these models are
quite large in comparison to the sample they represent, this
results in memory management issues, resolved by modeling
only small portions of the data and pruning them individu-
ally before merging them into the final model.[3]

4.2 Heuristics in Static Analysis

Though the fight against malware sees a constant evo-
lution in the techniques used by malware authors, several
decades of experience from malware researchers still has a
place in automated analysis in the form of heuristics. These
heuristics identify basic things that are in common amongst
many types of malware.

One major concern when using heuristics that they often
have a tendency to false positives. This problem prevents
heuristics from being the only part of an automated malware
analysis system.[16] In general, heuristics seem to be useful
for increasing the suspicion that a sample is malicious, but
play a secondary role to Markov chains.

4.2.1 Obfuscation and Camouflage

Most legitimate software does not have convoluted math-
ematical instructions. Malware on the other hand often in-
clude things like many XOR operations, ADD operations,
and more, generally to provide for some obfuscation or en-
cryption to the main body of the malware code. As a result,
systems like Hancock include a heuristic to check for these
types of operations.[3]

In addition to noting mathematical operations, another
heuristic can be applied to detect encryption. Since many
forms of malware encryption are XOR encryption, they can
easily be detected when examining the code using a tech-
nique developed by Eugene Kaspersky.[13] Better forms of
encryption can be spotted by applying a rule to look for
random data in the file.

4.2.2 Entry Points, Imports and Exports

A number of heuristics look at the basic structure of a
suspect binary file to add support to the belief that the
sample is malicious.

Entry points are the first of these, viruses and similar
types of malware will often infect an executable and place
the virus body within a non-code portion (usually the data
segment) of the executable. Initially virus writers used this
approach because older scanners only looked at the code
portions of an executable. This is now longer the case,
and including this heuristic in an automated analysis sys-
tem provides a very low false positive rate when it is trig-
gered.[14][13]

Much like entry points, imports provide an excellent area
to apply a heuristic. While most programs employ a glut
of libraries, especially when performing common activities,

malware will often skip their import, since it often spreads
via a low bandwidth channel or has limited space available
to store its libraries.[14] Conversely, heuristics can also be
employed to look for combinations of libraries common to
malware, for instance looking for encryption libraries and
networking libraries could help indicate a worm.

For a final structural heuristic, analysis systems can also
look at the exports of a binary. If a dynamically-linked
library fails to provide exports, this is almost a sure sign
that it is a piece of malware.[14]

Structural heuristics are very useful for inclusion in an
automated malware analysis system. Unfortunately, as mal-
ware becomes more sophisticated, the most dangerous mal-
ware becomes less likely to be detected by these heuristics, as
malware authors intentionally avoid triggering them. How-
ever, a significant chunk of malware being created is written
by inexpert authors, so these heuristics are still valuable for
inclusion in an automated analysis system.

4.2.3 Simple Heuristics for Repeatable Identification

One of the major requirements for most commercial auto-
mated malware analysis systems and some research systems
is the ability to repeatably identify malware. This requires
the ability to identify certain characteristics that can be in-
cluded in a malware signature, and distributed to clients for
detection of the malware on general purpose computers.

Looking for unusual address offsets provides an easy mech-
anism for identifying specific malicious software. Since a
large offset from the base pointer usually indicates a large
data structure, it is unlikely that a good program and a ma-
licious program will share the same offset. By comparing
the offset to offsets in a database of good software it may
become useful for inclusion in a malware signature.[3]

Local function calls also are useful for repeatably identi-
fying a piece of malware. Since these function calls are not
shared with good software, unlike library calls, the setup for
the function call may be unique to the piece of malware.[3]
As a result, local function calls are potentially useful for
inclusion in malware signatures.

4.3 Neural Network Static Analysis

Neural networks can be trained to convert assembly code
into control flow diagrams.[10] This technology can be useful
for attempting to understand malware, but in the end virus
writers utilizing trying to obfuscate their code can probably
still prevent control flow from being of much help to identify
malware. However, neural nets can be of help to detect
certain varieties of malware, and recognize malware from
the same family, as described below.

Neural networks can also be trained to recognize families
of malware with a very low false positive rate. This tech-
nology has been integrated into the IBM AntiVirus which
has a false positive rate under 1% and successfully detected
three-fourths of all boot sector viruses since release [16]. Un-
fortunately, neural nets show little aptitude at detecting gen-
uinely new malware, and thus tend to be left out of newer
systems, such as Hancock.[3]

4.4 Limitations and Benefits to Automated Static

Analysis of Malware
Static analysis survives in both manual analysis and au-
tomated systems due to the safety factor it adds by never
running the malware. It also is very capable at generat-

ing signatures that can be distributed to detect the mal-
ware in the future. However, as it cannot see the results
of running code, it must fight against the non-deterministic
nature of disassembling code, large code bases, obfuscation
techniques, and ends up being most capable at identifying
related pieces of malware rather than identifying wholly new
malware.

S. DYNAMIC ANALYSIS SYSTEMS

Dynamic analysis is the counter part to static analysis.
Unlike static analysis, automated dynamic analysis systems
do not just focus on repeatably identifying malware, but
also on detecting the presence of malware compared legiti-
mate human presence. Techniques used in dynamic analysis
range from debugging to utilizing anomaly detection sys-
tems. Dynamic analysis using anomaly detection benefits
from research into intrusion detection systems, which often
also depend on anomaly detection.

5.1 Anomaly Detection on Host

Anomaly detection on a host is a system which resides on
the same machine as it wants to monitor. This allows it to
detect changes in the behavior in the system, and identify
malware or at least its presence.

One approach to detecting the presence of malware is to
model user behaviors on the host system. In this case, pro-
files of user access to resources, their login time, privilege
level, and other useful factors are built up. The data collec-
tion can either take place in real time, or by scanning audit
logs containing the same information. The user profile can
be modeled a number of ways, a common approach to this
appears to be through the use of Markov models. Assum-
ing a clean initial state, this allows the detection of sudden
changes in behavior that are ascribed to a particular user,
and may be due to malware operating on their behalf.[2] By
creating a profile for how malware behaves, it becomes pos-
sible to identify something as malware, rather than a generic
intrusion attempt.

Unfortunately, using user activity has a major pitfall, mainly

in that humans fail in repeating themselves as predictably
as a computerized detection system might like. However,
through using dynamic analysis it is possible to hook func-
tion calls and determine the system calls being used by soft-
ware. As it turns out, even though exactly what a human
may do with a system is erratic, the system calls used dur-
ing normal usage are more reliable. One approach to build-
ing up the profile of normal system calls is through using a
Bayesian network to simply classify each individual call as
normal or anomalous.[9] A more sophisticated, and poten-
tially reliable approach is to use Markov models, described
in the AccessMiner subsection below.

5.1.1 AccessMiner - Using Markov models and Sys-
tem Calls

AccessMiner is an experimental anomaly detection system
that checks system calls to discover anomalies. It utilizes a
large database of system calls collected across several Win-
dows systems used in various environments. Much like in
static analysis of code, AccessMiner used the n-gram Markov
model. Instead of using bytes as a gram, it uses system calls
as a gram, allowing it to track not only how unusual a spe-
cific system call is, but also how unusual a specific sequence
of system calls is.

Having gathered a database of normal system usage on the
order of 100 gigabytes, AccessMiner was able to identify un-
usual system call chains by comparing them to the database
of normal system calls, and thus better identify anoma-
lous behavior.[6] By extending this approach with a larger
database of normal behavior on known clean systems, and
further training it with malware sets in a separate database,
this system has the potential to be able to classify malware
within families or even determine the type of malware based
on the system call chains. At the moment, the authors of
AccessMiner recognize that it could potentially be used in
the malware classification area, but suggest that it would
have short comings and may identify too many legitimate
programs as malware.

5.2 Botnet Detection on Network Based Sys-
tems

Network based anomaly detection sits on the network rather
than the host infected. Just as for host based systems, net-
work anomaly detection systems are used for more than just
detecting malware, but can be used for that purpose. A
network based system has the advantage of being separated
from the host, and thus not subject to being manipulated by
the malware, but at the same time is incapable of detecting
forms of malware that do not use networks, such as viruses,
or even backdoors, which can be hard to distinguish from
legitimate remote access protocols. However, one of the ma-
jor new types of malware of the past few years, the botnet,
is very susceptible to detection from network detectors.

5.2.1 Behavior Clustering for Botnet Detection

One approach to detecting botnet traffic is through behav-
iorial clustering, which is an approach to classifying things
via their statistical similarities. For detecting protocols that
are being used by malware, the packets are examined, and
their structural characteristics are used to cluster them. In
order to handle the large amount of traffic, the network flow
cannot be clustered directly. Instead, two steps are taken to
allow scalability. First there is a course-grained clustering
step, which looks at easily discernible characteristics such as
size, number of packets, and material in the packet headers.
This generally can identify malware, but may not be able
to pin down a given family for the botnet.[11] The second
step is fine-grained clustering. which works with the groups
that the first pass created. This step examines structural
characteristics of the packets to discover differences between
different types of malware.[11] Because it naturally discovers
what makes the botnets unique, behavioral clustering allows
for the creation of signatures that can be used in generic in-
strusion detection or prevention systems.

Clustering can be done with a number of different mech-
anisms, which can be used in conjunction with each other
for better results. The first approach is a simple, signatures-
based classifier, which is basically a rule driven system. In
this approach, basic characteristics of packets are examined
in order to identify them as packets of interest. This ap-
proach works best as part of the course-grained pass, since
no signatures exist when doing the classification of an un-
known botnet. Signatures can, however, help to identify
potentially interesting traffic.[15]

Markov chains, once again in the form of n-grams, can
also be used. Clustering these behaviors is an obvious ap-
plication of a Markov chain, because it even has a temporal

component, making the sequence of states clear. The tem-
poral component is an important factor in detecting bot-
nets this way, because it can be used to distinguish a botnet
from a human. Where a human, being slow compared to
a CPU, will always take some time before they respond to
any given piece of information that has been received over
the network, bots communicating with their command and
control almost invariably respond instantly. Generally, each
gram will be composed of a packet. Once enough packets
have been gathered, the chains can be compared against
a database of normal traffic, and other identified malware
traffic to attempt to identify the botnet in question.[15]

It is worth noting that these signatures, unlike signatures
generated by all previous mechanisms, are capable of detect-
ing malware without ever examining the code of the mal-
ware, or directly observing its behavior on its victim.

5.2.2 Fuzzy Pattern Recognition

Fuzzy pattern recognition technology has been applied to-
wards tracing the command and control servers of a botnet
network, as part of an effort to disable a botnet network.
The creators of this approach first recognized that botnets
often generate failed DNS queries and failed network flows
due to incompatibilities in their current network. Addition-
ally, they took into account the fact that DNS queries repeat
upon failure at the same rate across all bots on the network,
and that they generate packets with payloads of about the
same size. By applying fuzzy logic to each to the results
of these heuristic as they are triggered, numbers can be as-
signed to how closely a botnet matched each of the expect
behaviors. From the resulting numbers, it can be decided if
the behavior is a human behavior or a botnet behavior.[4]

One important benefit of using fuzzy pattern recognition
is that it helps detect malware attempting to make its activ-
ity appear human-like. This counteracts a major defensive
technique against dynamic analysis, making the behaviors
seem legitimate, assuming it can be applied well enough to
detect human-like malware.

5.3 Limitations and Benefits to Automated Dy-
namic Analysis of Malware

Dynamic analysis can actually observe behaviors to dis-
cover things that seem malicious. As a result, dynamic anal-
ysis can be very good at detecting the presence at malware,
but can only rarely create signatures that allow the detection
of the malware before it is actually run. Also, due to the fact
that it takes time for the malware expose all its behaviors
while running, dynamic analysis is more time consuming,
and generally more resource intensive than static analysis,
thus limiting its adoption on commercial analysis systems.

6. RESULTS

Malware analysis for identification has become a major in-
dustry due to the rapid growth in malware in the wild. This
paper surveys the efforts that have been made to automat-
ically perform the analysis. None of the techniques covered
seems adequate to overtake the improvements in writing
malware that have been occuring, so it is likely that prob-
lems in rapidly analyzing and responding to malware will
continue. Additionally, neither dynamic nor static anaylsis
seem to be capable of identifying truly new malware without
human intervention.

6.1 State of Automated Static Analysis

Automatic static analysis seems to be in a more advanced
state than does dynamic analysis. This is a result of the
drive in the anti-virus industry to handle the huge influx in
malware that has occurred in recent years, since the indus-
try cannot afford the time to perform dynamic analysis on
every piece of malware. Additionally, static analysis yields
signatures that allow the customer to scan the file before
ever running it, reducing the risk that malware will have
the opportunity to infect their system.

Automatic static analysis mostly focuses on the creation
of Markov chains to examine the machine code and compare
it to a database of legitimate software chains, as well as us-
ing heuristics to identify characteristics of samples that are
suspicious. By combining the evidence presented by heuris-
tics and Markov chains, static systems are able to identify
new malware or existing (but mutated) malware in samples
with a very low false positive rate.

Overall, automated static analysis will likely continue to
be a major force in automated analysis of malware. Unlike
dynamic analysis, it does not rely on creating an emulator
(which can be detected by malware) or actually infecting
real machines or virtual machines, but can be utilized with-
out the risk of an escaped sample. The major disadvantage
to performing static analysis is it makes it is impossible to
tell for sure what the behavior of a sample will be without
running it. Thus being able to detect if a sample is malware
depends on how well the code was obfuscated or mutated
from its original form. Automated static analysis can also
rarely classify the malware into a particular category of mal-
ware, unless it is able to locate the family from which the
malware is from.

6.2 State of Automated Dynamic Analysis

Automatic dynamic analysis remains the younger brother
of static analysis. Although dynamic analysis is a powerful
tool for identifying and classifying malware, the additional
risk of escape, the fact that the signatures it creates cannot
be compared to a suspected file without running it, and the
additional cost of running each sample prevents its entry
into the mainstream anti-virus analysis systems, and leaves
it mostly to the realm of academics.

Most automated dynamic analysis focuses on anomaly de-
tection on the host machine. The initial approach to this was
to create profiles of user behaviors, but as humans are not as
consistent as software, this approach has mostly given way
to function call driven detection, especially to examine the
system calls performed. Since malware often uses sequences
of system calls that do not appear in normal computer usage,
this can be a very successful method of detection. Unfortu-
nately, as mentioned before, this approach still may expose
the user to malware.

It should be noted that there is a major exception to the
low adoption of dynamic malware analysis systems, in the
form of detecting botnets. By utilizing the existing research
into anomaly based intrusion detection systems, automated
systems have been created to detect and identify the family
of botnet via network traffic. This technique appears to
be in use in some commercial intrusion detection systems
currently, and certainly is a well researched area.

Overall, the dynamic analysis approaches are best left in
the field for usage as intrusion prevention systems, which
can clamp down on the dangerous behaviors before they

can actually do damage. For identifying particular malware,
they struggle more, being able to identify that some form
of malicious activity is occurring, but only rarely able to
identify that it is a specific family or type of malware.

7. FURTHER RESEARCH

Since this paper was a survey, there are many areas of
interest that could be of interest for further research. The
sections below cover the most notable of them.

7.1 Commercial Automated Analysis Systems

Although Synamtec has released some information about
systems like Hancock, most of the other anti-virus vendors
seem to keep the information about their systems quieter.
Researching systems backing the likes of Kaspersky or McAfee
may yield information about new techniques that are supe-
rior to or complement Synamtec’s.

7.2 End User Anti-Virus

Although much of the heavy lifting for analysis is done on
systems at the anti-virus vendor’s headquarters, most anti-
virus software contains techniques to uncover suspicious ac-
tivity, blending host-based anomaly detection system into a
rule matching system. More time could be spent researching
these tools to understand how they are able to detect new
malware independently. This also includes how signatures
are generated and applied.

7.3 Hybrid Systems

Systems which use both dynamic and static analysis ap-
pear to exist, for instance Synamtec mentions its Blood-
hound technology delivered as part of its anti-virus, which
they describe as using both static and dynamic analysis to
identify files containing new types of malware. In Blood-
hound, the code is actually run within a sandbox, so that
its system calls can be analyses.[5] Most articles limit their
focus to either dynamic or static analysis, but since both
have strengths and weaknesses that complement each other,
using a hybrid approach seems to have value.

7.4 Information Tracing

Since modern malware is focused either on retrieving in-
formation and sending it back to its master (such as pass-
words and other personal information), or focused on con-
trolling the computer for the gain of the attacker, tracing
the flow of information throughout the execution process
can yield information about the intent of the malware. Al-
though this technique is used in manual analysis, and it is
suggested in various papers cited in this paper, there ap-
pears to be little information about using it as part of an
automated system.

7.5 Applications of Fuzzy Logic

The only source found using fuzzy logic related to using
it to classify network traffic to identify botnets. Since this
paper suggested that fuzzy pattern recognition allow the sys-
tem to detect botnets which attempt to made their actions
look like human actions, it should be possible to apply this
to other forms of analysis.[15] Applying fuzzy logic to static
code heuristics may have use in detecting malware using new
methods of camouflage.

1]
2]

3]

[4]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

REFERENCES

Mcafee threats report: First quarter 2013. Tech. rep.,
McAfee Labs, 2013.

DENNING, D. E. An intrusion-detection model. IEEE
Transactions on Software Engineering 13, 2 (1987),
222 — 232.

GRIFFIN, K., SCHNEIDER, S., HU, X., AND CHIUEH,
T.-c. Automatic generation of string signatures for
malware detection. LECTURE NOTES IN
COMPUTER SCIENCE, 5758 (2009), 101 — 120.
KuocHEN, W., CHUN-YING, H., SHANG-JYH, L.,
AND YING-DAR, L. A fuzzy pattern-based filtering
algorithm for botnet detection. Computer Networks 55
(n.d.), 3275 — 3286.

LAKHOTIA, A., KUMAR, E., AND VENABLE, M. A
method for detecting obfuscated calls in malicious
binaries. [IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING 31, 11 (n.d.), 955 — 968.

Lanzi, A., BALzArROTTI, D., KRUEGEL, C.,
CHRISTODORESCU, M., AND KIRDA, E. Accessminer.
Proceedings of the 17th ACM Conference: Computer
& Communications Security (2010), 399.

LiN, D., AND STAMP, M. Hunting for undetectable
metamorphic viruses. Journal in Computer Virology 7,
3 (2011), 201.

LUGER, G. F. Artificial Intelligence: Structures and
Strategies for Complex Problem Solving, 6th ed.
Addison-Wesley Publishing Company, USA, 2008.
Mvutz, D., VALEUR, F., VIGNA, G., AND KRUEGEL,
C. Anomalous system call detection. ACM
Transactions on Information & System Security
(TISSEC) 9, 1 (2006), 61.

NASCIMENTO, T. M., BOCCARDO, D. R.,
PRADO, C. B.,, MACHADO, R. C. S., AND
CARMO, L. F. R. C. Program matching through
code analysis and artificial neural networks.
International Journal of Software Engineering &
Knowledge Engineering 22, 2 (2012), 225 — 241.
PERDISCI, R., ARIU, D., AND GIACINTO, G. Scalable
fine-grained behavioral clustering of http-based
malware. Computer Networks 57, 2 (2013), 487 — 500.
Botnet Activity: Analysis, Detection and Shutdown.
SKouDIS, E., AND ZELTSER, L. Malware: Fighting
Malicious Code. Prentice-Hall Series in Computer
Networking and Distributed Systems. PRENTICE
HALL COMPUTER, 2004.

SZOR, P. The Art of Computer Virus Research and
Defense. Addison-Wesley Professional, 2005.

T.,D., R., R., G.,, P, K., B., M., G., AND S., R.
Malware target recognition via static heuristics.
Computers & Security 81 (n.d.), 137 — 147.

WEL, L., GOALETSA, R., AND ALI A., G. Clustering
botnet communication traffic based on n-gram feature
selection. Computer Communications 84, Special Issue
of Computer Communications on Information and
Future Communication Security (n.d.), 502 — 514.
WonNG, W., AND StaMP, M. Hunting for
metamorphic engines. Journal in Computer Virology
2, 3 (2006), 211-229.

